
Journal of Solid State Chemistry 176 (2003) 412–416

The origin of a flat band
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Abstract

The origin of a ‘‘flat band’’ as defined in the ‘‘flat band–steep band’’ model for superconductivity has been studied. A ‘‘local

inversion center’’ is derived mathematically as the necessary and sufficient condition for an occurrence of a ‘‘flat band’’ at an

arbitrary ~kk point. From the ~kk-dependent part of Eð~kkjÞ; a ‘‘pseudo-inversion center’’ is demonstrated to be a sufficient condition

based on the Patterson symmetry. The chemical bonding origin of a ‘‘flat band’’ is also studied analytically with a tight-binding

approach.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Superconductivity represents a coherent state of
pairwise correlated conduction electrons. In a metal
the tendency for pairwise localization of electrons is
counteracted by the itinerant character of the majority
of the conduction electrons as otherwise a non-
conducting state would result. In a series of papers we
have pointed out that this pairwise localization vs.
mobility picture of electrons reflects itself in the band
structure as a ‘‘flat band–steep band’’ scenario [1–4]
which is a necessary though not a sufficient condition
for a metal to become a superconductor [5,6]. A ‘‘flat
band’’ as defined on the basis of band theory in Ref. [2]
refers to close to zero-velocity points (or extended
regions) in momentum space of electrons near the Fermi
level. As the ‘‘flat band’’ plays a crucial role in our
model and has not yet been studied in our previous
work, we investigate here the general conditions for the
occurrence of a ‘‘flat band’’ in a band structure. Some
earlier attempts have been made to find such conditions
in terms of the occurrence of van Hove singularities and
zero-slope points by Kudryavtseva [7] and Cracknell [8].
However, such efforts have only given some sufficient
conditions related with point group symmetries. In this
work, we start with a general expression of an electronic
energy spectrum in a solid and then study its local

symmetry in momentum space and its relation to the
chemical bonding in a solid.

2. Description of the method

The energy of an electron in a crystalline solid can
be expressed as an eigenvalue of the Hamiltonian of
the system

Eðk
,

jÞ ¼ / k
,

jjĤj k
,

jS; ð1Þ

where j k
,

jS is the eigenstate of operator Ĥ in Bloch

representation with k
,

being the wave vector of an
electron and j the band index. Now we use the Wannier
representation [9] of the eigenstate, namely

j k
,

jS ¼ 1ffiffiffiffiffi
N

p
X

l
,

e
i k
,

l
,

j l
,

jS; ð2Þ

where N is the total number of primitive unit cells in the

crystal, and l
,

is the lattice vector in real space. By using

Eq. (2) and the translational symmetry of the direct
lattice, Eq. (1) can be written as

Eðk
,

jÞ ¼ 1

N

X
l
,

e
i k
,

l
,

Hjð l
,

Þ; ð3Þ

where Hjð l
,

Þ ¼ / l
,

1jjĤj l
,

2jS with l
,

¼ l
,

1 � l
,

2 is the

hopping integral between lattice point l
,

1 and l
,

2; which
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generally represents the inter-cell interactions ð l
,

1a l
,

1Þ

or the on-site interactions ( l
,

1 ¼ l
,

1). With formula (3),

it is convenient to calculate the group velocity of an
electron in the first Brillouin zone (BZ) and thus
determine the positions of ‘‘flat bands’’ and ‘‘steep
bands’’ in the BZ.

The concept ‘‘flat/steep band’’ as defined in our earlier
work [2], relies on the group velocity which assumes a fixed
band indexing scheme. Any changes such as choosing a
supercell or lowering the symmetry etc. which result in a
new indexing of bands and thus change the ‘‘flatness’’ of
a band should be avoided in one analysis, because such
changes do not change the physics of the system.
The group velocity ~vv of an electron is defined as [10]

~vv ¼ 1

_
rkEð~kkjÞ: ð4Þ

By substituting Eq. (3) in Eq. (4) we obtain for ~vv

~vv ¼ 1

N_

X
l
,

i l
,

e
i k
,

l
,

Hjð l
,

Þ: ð5Þ

The summation term in Eq. (5) contains two factors.

The first one is i l
,

e
i k
,

l
,

which is ~kk and l
,

dependent,

while the second one, Hjð l
,

Þ; has no ~kk dependence. It is

obvious that both these two factors can independently

or cooperatively produce a ‘‘flat band’’ (~vvð~kkjE0)). In order
to see the influence of the first factor clearly, we take the
tight-binding approximation of Eq. (3), namely include
only the zero and first-order terms in the right hand of
Eq. (3), which under the isotropic approximation leads to

Eð~kkjÞ ¼ Hjð0Þ þ Hjð1Þ
X
r
,

e
i k
,

r
,

: ð6Þ

The summation index r
,
runs over all of the nearest-

neighbor lattice vectors of one lattice point, and Hjð1Þ
is the isotropic nearest-neighbor interaction. From
Eq. (6) the velocity ~vvð~kkjÞ can be calculated as

~vv ¼ 1

_
Hð1Þ

X
r
,

i r
,
e
i k
,

r
,

: ð7Þ

Formula (7) can be directly used to determine the
position of a ‘‘flat band’’. For example, if a lattice has
a center of symmetry then (7) can be simplified as

~vv ¼ � 1

_
Hð1Þ

X
r
,

r
,
sinðk

,

r
,Þ: ð8Þ

As r
,

runs only over the nearest neighboring lattice
points, it can only be one of the primitive unit vectors
( t
,

i; i ¼ 1; 2; 3). Considering the definition of the BZ

and the fact that Eð~kk þ K
,
Þ ¼ Eð~kkÞ; we know that k

,

r
,

must be np (n ¼ 0;71y) to make~vv ¼ 0; which requires
that ~kk lies at the BZ center or boundary. For more
general cases, it is difficult to directly use the explicit
formula (5) to determine the position of ‘‘flat bands’’
in the whole BZ.
Cracknell’s ‘‘zero-slope’’ conditions only reflect the

contribution of the first factor (i l
,

e
i k
,

l
,

) in formula (5),

which are just some sufficient conditions for the
occurrence of ‘‘flat bands’’. To find the necessary and
sufficient conditions for a ‘‘flat band’’ to occur in the
BZ, we analyze the structure of Eð~kkjÞ in the neighbor-
hood of ~kk: For simplicity, we omit the band index j

in the following derivation. By using a Taylor expan-
sion, we have

Eð~kk þ d~kkÞ ¼ Eð~kkÞ þ d~kkrEð~kkÞ þO2ðd~kkÞ; ð9aÞ

Eð~kk � d~kkÞ ¼ Eð~kkÞ � d~kkrEð~kkÞ þO2ðd~kkÞ ð9bÞ

(O2ðd~kkÞ; higher order terms). From (9) a directional

derivative along an arbitrary direction ~uu ¼ d~kk=jd k
,

j can
be calculated as

~uurEð~kkÞ ¼ lim
jdkj-0

Eðk þ dkÞ � Eðk � dkÞ
2jdkj : ð10Þ

The gradient of Eð~kkÞ in Eqs. (9) and (10) can be written
in its component form in the Cartesian coordinate
system with ~eei (i ¼ 1; 2; 3) being the basis vectors:

rEð~kkÞ ¼ qEð~kkÞ
qkx

~ee1 þ
qEð~kkÞ
qky

~ee2 þ
qEð~kkÞ
qkz

~ee3

¼ x1~ee1 þ x2~ee2 þ x3 e
,
3: ð11Þ

To find x1; x2 and x3 we use Eq. (10) and multiply
Eq. (11) with three arbitrarily chosen independent unit
vectors~uui (here i ¼ 1; 2; 3; does not represent a Cartesian
component) and obtain

u11 u12 u13

u21 u22 u23

u31 u32 u33

0
B@

1
CA

x1
x2
x3

0
B@

1
CA ¼

d1

d2

d3

0
B@

1
CA; ð12Þ

where the derivative di in ~uui (i ¼ 1; 2; 3) direction is
defined as

di ¼ lim
jd~kki j-0

Eð~kk þ~uuijd~kkijÞ � Eð~kk �~uuijd~kkijÞ
2jd~kkij

: ð13Þ

According to Gramers rule the coefficients are: x1 ¼
D1=D; x2 ¼ D2=D; x3 ¼ D3=D with

D ¼ u1 
 ð~uu2 �~uu3Þ;
D1 ¼ ½d1ð~uu2 �~uu3Þ þ d2ð~uu1 �~uu3Þ þ d3ð~uu1 �~uu2Þ
~ee1;
D2 ¼ ½d1ð~uu2 �~uu3Þ þ d2ð~uu1 �~uu3Þ þ d3ð~uu1 �~uu2Þ
~ee2;
D3 ¼ ½d1ð~uu2 �~uu3Þ þ d2ð~uu1 �~uu3Þ þ d3ð~uu1 �~uu2Þ
~ee3:
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For clarity we introduce ~ggi ¼ ~uuj �~uuk=~uu1ð~uu2 �~uu3Þ
(i; j; k ¼ 1; 2; 3).
Then we obtain

x1 ¼
D1

D
¼ ðd1~gg1 þ d2~gg2 þ d3~gg3Þ~ee1;

x2 ¼
D1

D
¼ ðd1~gg1 þ d2~gg2 þ d3~gg3Þ~ee2;

x3 ¼
D3

D
¼ ðd1~gg1 þ d2~gg2 þ d3~gg3Þ~ee3:

ð14Þ

As~eei 
~eej ¼ dij ; it follows from these three equations that
if and only if d1; d2 and d3 are all zero, x1; x2 and x3 can
all be zero which is the condition for the presence of a
flat band. Considering Eq. (13) and the fact that ~uui

(i ¼ 1; 2; 3) is chosen arbitrarily and independent of each
other, di ¼ 0 thus implies that there exists an local

inversion center for Eð~kkÞ at ~kk with respect to its

neighborhood. This is the necessary and sufficient
condition for the existence of a ‘‘flat band’’ at an
arbitrary ~kk point. It should be stressed that this is a
general conclusion, because in our derivation we do not
assume any conditions for Eð~kkÞ except that it is
differentiable with respect to ~kk: This ‘‘inversion center’’
at ~kk is local with respect to Eð~kkÞ; which has nothing to
do with the intrinsic center of symmetry of the reciprocal
space.
It is obvious from formula (13), that the necessary and

sufficient condition will easily be satisfied, if there exists
some symmetry elements at ~kk: The symmetry properties
of Eð~kkÞ have already been studied before [11–13], but
for a better understanding and explanation, a simple
demonstration is given here. Suppose that fajug is a
space group operation, then its inverse operation is
fajug�1 ¼ fa�1j � a�1ug; and ÔðfajugÞ is the corre-
sponding symmetry operator. Hamiltonian Ĥ is invar-
iant under the symmetry operation, so is its eigenvalue
Eð~kkjÞ; namely ÔEð~kkjÞ ¼ Eð~kkjÞ: Now we apply Ô to
Eq. (1) and use the coordinate representation of the
state vector. Then we obtain

ÔEð~kkjÞ ¼
Z

/~kkjj r
,0 SĤ/ r

,0 j~kkjS d r
,0;

with r
,0 ¼ a�1 r

,�a�1u

¼
Z

/a~kkjj r
,
SĤ/ r

, ja~kkjS d r
,

¼Eða~kkjÞ ¼ Eð~kkjÞ: ð15Þ

Formula (15) tells us, that the non-symmorphic opera-
tions u in fajug do not exist. As Eð~kkjÞ ¼ Eð~kk þ ~kkjÞ
because of the translational symmetry and Eð~kkjÞ ¼
Eð�~kkjÞ; which is due to the time reversal symmetry,
Eð~kkjÞ has the symmetry of the Patterson group. As
a consequence we can consider the site symmetry in
reciprocal space as in real space. From Eqs. (13) and
(14), it is evident that if ~kk lies at a Wyckoff position of
the corresponding Patterson group, where there exists

a third order pseudo-inversion center then the flat band

condition is fulfilled. Here an nth order pseudo-inversion

center means that the inversion symmetry holds only for
n directions defined by linearly independent vectors, not
necessarily for all possible directions as for a real
inversion center. The pseudo-inversion center also refers
to the actual situation where only approximate symme-
try exists due to structure modulation or distortion.
This condition will guarantee the existence of a local
‘‘inversion center’’ as discussed above. The pseudo-
inversion symmetry self-evidently includes all of the
special cases P0ð~kk0Þ listed by Cracknell on the basis of
point group symmetries [8]. We thus establish a simple
procedure to determine a possible ‘‘flat band’’ at any
~kk point by using just the International Tables of
Crystallography. This ‘‘pseudo-inversion’’ symmetry
results from the Patterson group, and therefore repre-
sents a global symmetry of the isoenergy surface. It must
be pointed out that this global pseudo-inversion center
symmetry differs substantially from the ‘‘local inversion
center’’ discussed before. It implicitly excludes the case
where Cracknell’s symmetry condition is satisfied but
EðkjÞ is non-differentiable.
In the last part, we mainly have analyzed the

symmetry conditions resulting in ‘‘flat bands’’ as

reflected by the contribution of the factor i l
,

e
i k
,

l
,

in
Eq. (5), which does not involve any chemical constitu-
ents of the structure. The latter, however, is even more
important in deciding the physical and chemical proper-

ties. Now, we study the role of Hjð l
,

Þ in Eq. (5) which
provides some other conditions for flattening a band. As

already mentioned above, Hjð l
,

Þ represents the inter-cell
interactions, which are difficult to deal with when there
is more than one atom in the primitive unit cell. To see
how chemical bonding influences the flatness of a band,

we expand the state vector j k
,

jS explicitly on the basis
atoms as

k
,

j






�

¼
X
tL

w
k
,

tL







+

A
k
,

j

tL ; ð16Þ

where t is the atomic position vector, L is a shorthand
symbol of quantum number l and m; w represents the

basis function and A
k
,

j

tL is the eigenvector. With (16)
Eð~kkjÞ can be expressed as

Eðk
,

jÞ ¼
X

tL;t0þT
,

L0

H
tL;t0þT

,
L0A

k
,

j�
tL A

k
,

j

t0þT
,

L0
; ð17Þ

where H
tL;t0þT

,
L0

is a Hamiltonian matrix element

between the orbital L of atom t and L0 of atom t0 þ T
,

with T
,

being the lattice vector. In fact the summation

term in Eq. (17) is nothing else but the k
,

; j dependent
COHP matrix elements proposed by Dronskowski and
Blöchl who have used a real space representation [14].
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From (17) we calculate the velocity as

~vv ¼ 1

_

X
tL;t0þT

,
L0

H
tL;t0þT

,
L0rk A

k
,

j�

tL A
k
,

j

t0þT
,

L0

 !
: ð18Þ

Since COHP measures the covalent bonding strength,
generally speaking a weak covalent bonding (small
H

tL;t0þT
,

L0) between the atoms in different unit cells will

lead to a small ~vv and thus produces a flat band. A typical
example of this rule is the case of molecular crystals or
ionic crystals where there is nearly no covalence between
the molecules or ions, and the bands are indeed rather
flat. Such a correlation was also mentioned by
Hoffmann based on the orbital overlap argument [15].
A rather extended ‘‘flat band’’ derived from the non-
bonding orbital can be found in Wheeler et al.’s
work [16].

3. Discussion and conclusion

From the definition of a ‘‘flat band’’ and the general
expression for Eð~kkjÞ; we have found two sources that
result in a ‘‘flat band’’, one of which is ~kk-dependent, the
other ~kk-independent. Some sufficient conditions are
derived from the ~kk-dependent part by means of
the tight-binding model and the site-symmetry of the
Patterson group of Eð~kkÞ; that can be generalized as a
third order pseudo-inversion center at ~kk: The analysis
based on the ~kk-independent part connects weak covalent

bonding and the flat band. The analytical studies of Eð~kkjÞ
result in the necessary and sufficient condition for the
occurrence of a ‘‘flat band’’, that is the local inversion

center at ~kk:
It should be pointed out that the sufficient conditions

given above are for the ideal situation with respect to
symmetry. In practice one may meet a othird order
pseudo-inversion center or a strongly anisotropic
structure with respect to covalent bonding. In these
cases the ‘‘flat bands’’ exist only along some specific
directions. Besides, because of the pseudo-symmetry,
caused by structural modulation or distortion or any
other reasons, the extended Brillouin zone correspond-
ing to the pseudo-symmetry may be used to represent
the bands. In these cases, ‘‘flat bands’’ originated from
the above two reasons may occur inside the zone. An
interesting example can be found in a ‘‘helical face-
sharing tetrahedron chain’’ model [17]. From the above
discussion , it is also clear that the ‘‘flat band’’ resulted
from the ‘‘weak covalent bonding’’ condition should
have a larger extension than that from the ‘‘pseudo-
inversion center’’, because the former condition is ~kk-
independent.
As an illustration of these principles, we take a-Hg as

an example. It has space group R%3m; and the Patterson

group is also R%3m: From the listed Wyckoff positions
we know that inversion centers exist at aðGÞ;
bðZÞ; dðLÞ; eðFÞ; respectively, so ‘‘flat bands’’ should
exist at these ~kk points, which is consistent with our
numerical calculations [2]. Another interesting example
is MgB2 [18]. Fig. 1 shows the band structure calculated
with the TB-LMTO method. As MgB2 has a Patterson
symmetry of P6=mmm; the condition of ‘‘third order
pseudo-inversion center’’ is automatically satisfied at a
ðGÞ; bðAÞ and f ðMÞ; respectively.
As the G� A line has C6v symmetry, only a second

order pseudo-inversion center exists on it. The k points
on this line are all extremal points with respect to
lines in [001] plane, while for kz direction there is no
‘‘pseudo-inversion center’’, so qEkj=qkza0: Neverthe-
less, as the B?B interlayer covalent bonding is rather
weak the z-component of the group velocity, qEkj=qkz; is
very small. Therefore it is the symmetry and the 2D
character of the structure that produce the ‘‘flat band’’
from G to A: It should be noted that what we can see
from Fig. 1 is just the effect of small qEkj=qkz: To
really understand the flatness of band 3, 4 from G to A;
one needs to inspect the electronic velocities for these
states. Other ‘‘flat bands’’ exist in Fig. 1, however since
they are far away from the Fermi level they are not
included in our study. In a word, ‘‘flat bands’’ produced
by symmetry and ‘‘weak covalent’’ bonding simulta-
neously occur in MgB2 and lie close to the Fermi
level. This character together with the ‘‘steep band’’
crossing the Fermi level make MgB2 a model compound
of our ‘‘flat band/ steep band’’ scenario for super-
conductivity.
As a final remark we draw attention to the fact

that we treat the ‘‘flat band’’ independently with
respect to the position of the Fermi level. Of
course, for a ‘‘flat band’’ to play a role in the ‘‘flat
band–steep band’’ scenario of superconductivity, it
has to be close to the Fermi level. In that sense the
scenario provides a tool in the search for new super-
conductors.
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Fig. 1. Band structure of MgB2 calculated with the TB-LMTOmethod

shows the ‘‘flat band–steep band’’ character around the Fermi level.
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[14] R. Dronskowski, P.E. Blöchl, J. Phys. Chem. 97 (1993) 8617.

[15] R. Hoffmann, Rev. Mod. Phys. 60 (1988) 601.

[16] R.A. Wheeler, M.-H. Whangbo, T. Hughbanks, R. Hoffmann,

J.K. Burdett, T.A. Albright, J. Am. Chem. Soc. 112 (1990) 3784.

[17] C. Zheng, R. Hoffmann, D.R. Nelson, J. Am. Chem. Soc. 112

(1990) 3784.
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